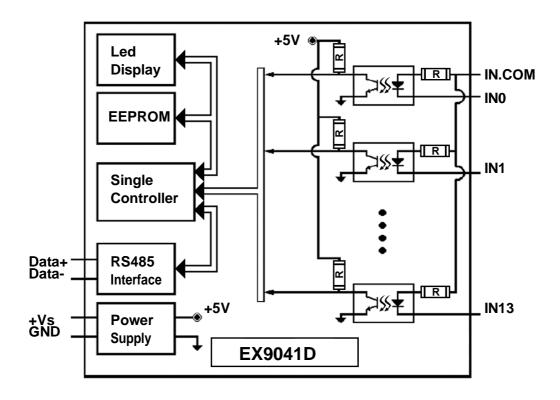
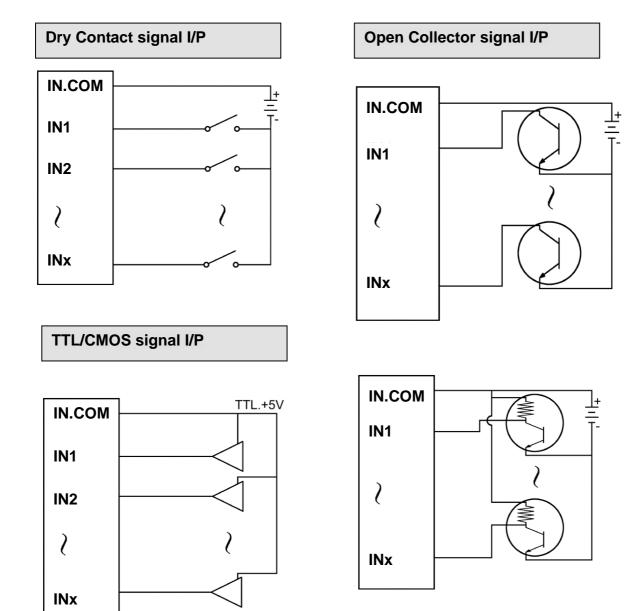

1. Introduction

EX-9041D/9041D-M provides 14 isolated digital input channels. All input channels are single ended with common source. The isolation voltage is up to 3750Vrms(See Sec. 1.2.1 Block diagram)

Specifications Interface : RS-485, 2 wires Speed : 1200, 2400, 4800, 9600, 19.2K, 38.4K, 57.6K,115.2K Input channels : 14 isolated single ended with common source. Isolation Voltage: 3750Vrms Logical level 0 : +1VDC Max. Logical level 0 : +1VDC Max. Logical level 1 : +4V ~ +30VDC Input impedance : 3K ohms LED: 14 digital input status LED Power input : +10V to +30VDC Power Consumption : 0.9W




1.1 Specifications

	EX-9041D	EX-9041D-M	
Digital Input			
Input Channels		14	
Input Type	Isolated single en	led with common source.	
ON Voltage Level		+4 to 30V	
OFF Voltage Level		+1V Max	
Input Impedance	3K Ohms		
Isolation Voltage	3750 Vrms		
Environment			
Modbus RTU	Not support	Support	
Power Requirement	+10 to +30 VDC		
Power Consumption	0.9W		
Operating Temperature	-25°C to +75°C		
Storage Temperature	-30°C to +75°C		

1.2 Wire connection

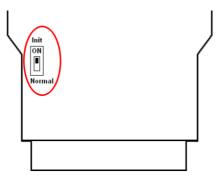
1.2.1 Block Diagrams

1.2.2 Wiring diagram for the EX-9041

1.3 Default Settings

Default settings for the EX-9041D modules are as follows:

- . Module Address: 01
- . DIO Type: 40
- . Baud Rate: 9600 bps


Default settings for the EX-9041D-M modules are as follows:

- . Protocol: Modbus RTU
- . Module Address: 01
- . DIO Type: 40
- . Baud Rate: 9600 bps

1.4 INIT* Mode Operation

Each EX9000 module has a build-in EEPROM to store configuration information such as address, type, baudrate and other information. Sometimes, user may forget the configuration of the module. Therefore, the EX9000 have a special mode named "INIT* mode" to help user to resolve the problem. The "INIT* mode" is setting as Address=00, Baudrate=9600bps, no Checksum .

Originally, the INIT* mode is accessed by connecting the INIT* terminal to the GND terminal. New EX9000 modules have the INIT* switch located on the rear side of the module to allow easier access to the INIT* mode. For these modules, INIT* mode is accessed by sliding the INIT* switch to the Init position as shown below.

To enable INIT* mode, please following these steps:

Step1. Power off the module

Step2. Connect the INIT* pin with the GND pin.

(or sliding the INIT* switch to the Init* ON position)

Step3. Power on

Step4. Send command \$002 (cr) in 9600bps to read the Configuration stored in the module's EEPROM.

There are commands that require the module to be in INIT* mode. They are:

1. %AANNTTCCFF when changing the Baud Rate and checksum settings. See Section 2.1 for details.

2. \$AAPN, See Section 2.16 for details.

1.5 Module Status for DIO, AIO

Power On Reset or **Module Watchdog Reset** will let all output goto **Power On Value**. And the module may accept the host's command to change the output value.

Host Watchdog Timeout will let all output goto **Safe Value**. The module's status(read by command~AA0) will be <u>04</u>, <u>and the</u> <u>output command will be ignored</u>.

1.6 Dual Watchdog Operation for DIO, AlO Dual Watchdog=Module Watchdog + Host Watchdog

The <u>Module Watchdog</u> is a hardware reset circuit to monitor the module's operating status. While working in harsh or noisy environment, the module may be down by the external signal. The circuit may let the module to work continues and never halt.

The <u>Host Watchdog</u> is a software function to monitor the host's operating status. Its purpose is to prevent the network from communication problem or host halt. When the timeout interval expired, the module will turn all outputs to predefined Safe Value. This can prevent the controlled target from unexpected situation.

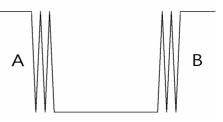
The EX9000 module with Dual Watchdog may let the control system more reliable and stable.

1.7 Reset Status

The Reset Status is set while the module power on or reset by module watchdog and is cleared while the command read Reset Status (\$AA5) applied. This is useful for user to check the module's working status. When the Reset Status is set means the module is reset and the output may be changed to the PowerOn Value. When the Reset Status is clear means the module is not rested and the output is not changed.

1.8 Digital O/P

The module's output have 3 different situation:


<1>Safe Value. If the host watchdog timeout status is set, the output is set to Safe Value. While the module receive the output command like @AA(Date) or #AABBDD, the module will ignore the command and return "!". And will not change the output to the output command value. The host watchdog timeout status is set and store into EEPROM while the host watchdog timeout interval expired and only can be cleared by command ~AA1. If user want to change the output it need to clear the host watchdog timeout status firstly and send output command to change the output into desired value.

<2>**PowerOn Value**. Only the module reset and the host watchdog timeout status is clear, the module's output is set to predefined Power On Value.

<3> Output Command Value. If the host watchdog timeout status is clear and user issue a digital output command like @AA (Data) or #AABBDD to module for changing the output value. The module will response success (receive>).

1.9 Latch Digital I/P

For example, use connect the key switch to Digital input channel of a digital input/output module and want to read the key stoke. The Key input is a pulse digital input and user will lost the strike. While reading by command \$AA6 in A and B position, the response is that no key stroke and it will lose the key stroke information. Respectely, the read latch low digital input command \$AAL0 will solve this problem. When issue \$AAL0 command in A and B position, the response denote that there is a low pulse between A and B position for a key stroke.

1.10 Configuration Tables Baud Rate Setting (CC)

Duuu Itut			0)					
Code	03	04	05	06	07	08	09	0A
Baud rate	1200	2400	4800	9600	19200	38400	57600	115200

Data Format Setting (FF)

7	6	5	4	3	2	1	0
*1	*2			*3			

- *1: Counter Update Direction: 0 =Falling Edge, 1=Rising Edge.
- *2: Checksum Bit : 0=Disable, 1=Enable.
- ***3**: The reserved bits should be zero.

Read Digital Input/Output Data Format table

Data of \$AA6,\$AA4,\$AALS:(First Data)(Second Data)00

Data of @AA:(First Data)(Second Data)

Note: Both the First Data and the Second Data are in two hexadecimal digitals format.

Module	The First data		The Second data	
EX9041D/9041D-M	DI8~DI13	00~3F	DI0~DI7	00~FF

2.0 Command Sets 2.1 %AANNTTCCFF

Description: Set Module Configuration. **Syntax: %AANNTTCCFF[CHK](cr)**

%	a delimiter character
AA	address of setting/response module(00 to FF)
NN	new address for setting/response module(00 to FF)
TT	type 40 for DIO module
CC	new baudrate for setting module.
FF	new data format for setting module.

If the configuration with new baudrate or new checksum setting, before using this command, it is needed to short the INIT* to ground (or sliding the INIT* switch to the Init ON position of rear side). The new setting is saved in the EEPROM and will be effective after the next power-on reset.

Response:	Valid Command:	!AA
	Invalid Command:	?AA

Example:

Command: %0102240600

Receive: !02

Set module address 01 to 02, return Success.

2.2 #**

Description: Synchronized Sampling **Syntax:** #**[CHK](cr)

delimiter character** synchronized sampling command

Response: No response

Example:

Command: #** No response Send synchronized sampling command to all modules.

Command: \$014 Receive: !10F0000 Read synchronized data from address 01, return S=1, first read and data is 0F0000

Command: \$014 Receive: !00F0000 Read synchronized data from address 01, return S=0, have readed and data is 0F0000

2.3 #AAN

Description: Read Digital Input Counter from channel N **Syntax : #AAN[CHK](cr)**

delimiter characterAA address of reading/response module (00 to FF)N channel to read

Response: Valid Command:>(Data)Invalid Command:?AA

(Data) digital input counter value in decimal, from 00000 to 99999

Example:

Command: #032 Receive: !0300103

Read address 03 digital input counter value of channel 2, return value 103.

Command: #025 Receive: ?02 Read address 02 digital input counter value of channel 5, return the channel is not available.

2.4 \$AA2

Description: Read configuration. **Syntax: \$AA2[CHK](cr)**

\$	delimiter character	
AA	address of reading/respons	se module (00 to FF)
2	command for read configu	ration
Respo	nse: Valid Command: Invalid Command:	!AATTCCFF ?AA
TT	type code of module, it	must be 40

- CC baudrate code of module
- FF data format of module

Example:

Command: \$012

Receive: !01400600

Read the configuration of module 01, return DIO mode, baudrate 9600, no checksum.

Note: check configuration Tables

2.5 \$AA4

Description: Reads the synchronized data **Syntax: \$AA4[CHK](cr)**

\$	delimiter character	
AA	address of reading/respon	se module (00 to FF)
4	command to read the synd	chronized data
Respo	onse: Valid Command: Invalid Command:	!S(Data) ?AA
S	status of synchronized dat	ta, 1=first read, 0=been readed

(Data) synchronized DIO value. See Section 1.10 for data format.

Example:

Command: #** no response Send synchronized sampling to all modules.

Command: \$014 Receive: !100F000 Read address 01 synchronized data, return S=1, first read, and synchronized data 0F00

2.6 \$AA5

Description: Read Reset Status
Syntax: \$AA5[CHK](cr)

- \$ delimiter character
- AA address of reading/response module (00 to FF)
- 5 command for read reset status

Response:Valid Command:!AASInvalid Command:?AA

S reset status, 1=the module is been reset, 0=the module is not been rested

Example:

Command: \$ 015 Receive: !011 Read address 01 reset status, return module is been reset

Command: \$ 015Receive: !010Read address 01 reset status, return no reset occurred.

2.7 \$AA6

Description: Read Digital I/O Status **Syntax: \$AA6[CHK](cr)**

\$ delimiter	chara	acte	er	
 	C	1.	,	

- AA address of reading/response module (00 to FF)
- 6 command for read channel status

Response:	Valid Command:	!(Data)
	Invalid Command:	?AA

(Data) Digital input value.

Example:

Command: \$016 Receive: !000F00 Assume module is EX9041, read address 01 DI status, return 000F, digital input channel 0~3 are on.

2.8 \$AAF

Description: Read Firmware Version **Syntax: \$AAF[CHK](cr)**

\$ delimiter character
AA address of reading/response module (00 to FF)
F command for read firmware version

Response:Valid Command:!AA(Data)Invalid Command:?AA

(Data) Firmware version of module

Example:

Command: \$01F Receive: !01D04.03 Read address 01 firmware version, return version D04.03

2.9 \$AAM

Description: Read Module Name
Syntax: \$AAM[CHK](cr)

\$	delimiter character
AA	address of reading/response module (00 to FF)
Μ	address of reading/response module(00 to FF)

Response:Valid Command:!AA(Data)Invalid Command:?AA

(Data) Name of module

Example:

Command: \$01M Receive: !019041M Read address 01 module name, return name 9041M

2.10 \$AAC

Description: Clear Latched Digital Input **Syntax: \$AAC[CHK](cr)**

\$	delimiter character
AA	address of reading/response module (00 to FF)
С	command for clear latched digital input

Response:Valid Command:!AAInvalid Command:?AA

Example:

Command: \$01L0 Receive: !3FFF00 Read address 01 latch-low data, return 3FFF.

Command: \$01C Receive: !01 Clear address 01 Latched data, return success.

Command: \$01L0 Receive: !000000 Read address 01 latch-low data, return 0000.

2.11 \$AACN

Description: Clear Digital Input Counter **Syntax: \$AACN[CHK](cr)**

\$	delimiter character
AA	address of reading/response module (00 to FF)
С	command for clear latched digital input
Ν	digital counter channel N to clear

Response:	Valid Command:	!AA
	Invalid Command:	?AA

Example:

Command: #010 Receive: !0100123 Read address 01 input channel 0 counter value, return 123.

Command: \$01C0 Receive: !01 Clear address 01 input channel 0 counter value, return success.

Command: #010 Receive: !0100000 Read address 01 input channel 0 counter value, return 0.

2.12 \$AALS

Description: Read Latched Digital Input **Syntax: \$AALS[CHK](cr)**

-	,
\$	delimiter character
AA	address of reading/response module (00 to FF)
L	command for read latched digital input
S	1=select latch high status, 0=select latch low status

Response:Valid Command:!(Data)Invalid Command:?AA

(Data) readed status 1=the input channel is latched, 0=the input channel is not latched.

Example:

Command: \$01L1 Receive: !012300 Read address 01 latch-high data, return 0123.

Command: \$01C Receive: !01 Clear address 01 Latched data, return success.

Command: \$01L1 Receive: !000000 Read address 01 latch-high data, return 0000.

2.13 @AA

Description: Read Digital I/O Status **Syntax:** @AA[CHK](cr)

@ delimiter character

AA address of reading/response module (00 to FF)

Response:Valid Command:>(Data)Invalid Command:?AA

(Data) Digital input/output value.

Example:

Command: @01 Receive: >000F Assume module is EX9041, read address 01 DI status, return 000F, digital input channel 0~3 are on

2.14 ~AAO(Data)

Description: Set Module Name **Syntax:** ~AAO(Data)[CHK](cr)

~	delimiter character
AA	address of reading/response module (00 to FF)
0	command for set module name
(Data)	new name for module, max 6 characters

Response:Valid Command:!AAInvalid Command:?AA

Example:

Command: ~01O9041M Receive: !01 Set address 01 module name 9041M, return success.

Command: \$01M Receive: !019041M Read address 01 module name, return name 9041M.

2.15 \$AAP (only for EX9041D-M)

Description: Read protocol information of Module **Syntax: \$AAP[CHK](cr)**

\$	delimiter character			
AA	address of reading/response	se module (00 to FF)		
Р	command for read protocol information of module			
Respo	nse: Valid Command: Invalid Command:	!AAS ?AA		
S	The protocol supported by	the module		
	10: the protocol set in EE	PROM is Normal mode		
	11: the protocol set in EE	PROM is ModbusRTU mode		

Example:

Command: \$01P Receive: !0110 Reads the communication protocol of module 01 and returns a response of 10 meaning the protocol that will be used at the next power on reset is normal mode.

Command: \$01P1 Receive: !01 Sets the communication protocol of module 01 to Modbus RTU and returns a valid response. And the next power on reset is in ModbusRTU mode.

2.16 \$AAPN (only for EX9041D-M)

Description: Set the protocol information of Module **Syntax: \$AAPN[CHK](cr)**

\$ delimiter character

AA address of reading/response module (00 to FF)

- P command for set protocol information of module
- N The protocol supported by the module
 0: the protocol set in EEPROM is Normal mode
 1: the protocol set in EEPROM is ModbusRTU mode
 Before using this command, it is needed to short the
 INIT* to ground (or sliding the INIT* switch to the Init
 ON position of rear side). The new protocol is saved in
 the EEPROM and will be effective after the next
 power-on reset.

Response:	Valid Command:	!AA
	Invalid Command:	?AA

Example:

Command: \$01P1

Receive: !01

Sets the communication protocol of module 01 to Modbus RTU and returns a valid response. And the next power on reset is in ModbusRTU mode.

2.17 ~**

Description: Host OK Host send this command to all modules for send the information "Host OK" **Syntax:** ~**[CHK](cr)

~ delimiter character

** command for all modules

Response: No response

Example:

Command: ~**

No response

2.18 ~AA0

Description: Read Module Status **Syntax:** ~AA0[CHK](cr)

- ~ delimiter character
- AA address of reading/response module (00 to FF)
- 0 command for read module status

Response:Valid Command:!AASSInvalid Command:?AA

SS module status, 00= host watchdog is disabled & host watchdog timeout status is clear; 80= host watchdog is enabled & host watchdog timeout status is clear; 84= host watchdog is enabled & host watchdog timeout status is set . The status will store into EEPROM and only may reset by the command~AA1.

SS	Host watchdog	Host watchdog timeout status
00	Disable	Clear
80	Enable	Clear
84	Enable	Set

2.19 ~AA1

Description: Reset Module Status **Syntax:** ~AA1[CHK](cr)

- ~ delimiter character
- AA address of reading/response module (00 to FF)
- 1 command for reset module status

Response: Valid Command: **!AA**

Invalid Command: ?AA

2.20 ~AA2

Description: Read the Host Watchdog Timeout Value **Syntax:** ~**AA2[CHK](cr)**

~	delimiter character				
AA	address of reading/response module (00 to FF)				
2	command for read host watchdog timeout value				
Respo	nse: Valid Command: !AAEVV Invalid Command: ?AA				
E VV	host watchdog enable status, 1=Enable, 0=Disable timeout value in HEX format, each count is 0.1 second				
	01=0.1 second and FF=25.5 seconds				

2.21 ~AA3EVV

Description: Set host Watchdog Timeout Value **Syntax:** ~**AA3EVV[CHK](cr)**

~	delimiter character
AA	address of reading/response module (00 to FF)
3	command for set host watchdog timeout value
E	1=Enabled / 0=Disable host watchdog
VV	timeout value, from 01 to FF, each for 0.1 second

Response:Valid Command:!AAInvalid Command:?AA

Example:

Command: ~010

Receive: !0100

Read address 01 modules status, return host watchdog timeout status is clear.

Command: ~013164 Receive: !01 Set address 01 host watchdog timeout value 10.0 seconds and enable host watchdog, return success.

Command: ~012 Receive: !01164 Read address 01 host watchdog timeout value, return that host watchdog is enabled, and time interval is 10.0 seconds.

Command: ~**

No response

Reset the host watchdog timer. Wait for about 10 seconds and don't send command~**, the LED of module will go to flash. The flash LED indicates the host watchdog timeout status is set.

Receive: !0104 Command: ~010 Read address 01 module status, return host watchdog timeout status is set.

Command: ~012 Receive: 101064 Read address 01 host watchdog timeout value, return that host watchdog is disabled, and time interval is 10.0 seconds.

Command: ~011 Receive: !01 Reset address 01 host watchdog timeout status, return success And the LED of this module stop flash.

Command: ~010 Receive: !0100 Read address 01 module status, return host watchdog timeout status is clear.

EX9041-M Quick Start

- 1. The default setting is MODBUS mode after Power On.
- 2. Using INIT pin to contact with GND pin then Power On will enter Normal mode.
- 3. Command: \$00P0 is set EX9041-M to Normal mode after Repower On. On normal mode, user can set other setting like Address, Baudrate, (Please check the EX9000 user manual).
- 4. Command: \$AAP1 is set to MODBUS mode after Repower On.
- 5. Under Normal mode that Command: \$AAP can check which mode it is after Repower On.

Response:

!AA10=Normal

!AA11=MODBUS

01(0x01) Read Digital Input Value

Request

00	Address	1 Byte	1-247	
01	Function code	1 Byte	0x01	
02~03	Starting channel	2 Bytes	0x0020~0x002D for DI readback value	
			0x0040~0x004D for DI Latch high value	
			0x0060~0x006D for DI Latch low value	
04~05	channel numbers	2 Bytes	0x0001~0x000E	

Response

00	Address	1 Byte	1-247
01	Function code	1 Byte	0x01
02	Byte count	1 Byte	2
03	Input/Output	1 Byte	0x0000~0x3FFF
	channel readback		A bit corresponds to a channel. When the
	value		bit is 1 it denotes that the value of the
			channel that was set is ON. if the bit is 0 it
			denotes that the value of the channel that
			was set is OFF.

00	Address	1 Byte	1-247
01	Function code	1 Byte	0x81
02	Exception code	1 Byte	Refer to the Modbus standard for more
			details.

02(0x02) Read Digital Input Value

Request

00	Address	1 Byte	1-247	
01	Function code	1 Byte	0x02	
02~03	Starting channel	2 Bytes	0x0000~0x000D	
04~05	Input channel	2 Bytes	0x0001~0x000E	
	numbers			

Response

00	Address	1 Byte	1-247
01	Function code	1 Byte	0x02
02	Byte count	1 Byte	2
03	Input channel	2 Byte	0x0000~0x3FFF
	readback value		A bit corresponds to a channel. When the
			bit is 1 it denotes that the value of the
			channel that was Input response. if the bit
			is 0 it denotes that the value of the channel
			that was no Input response .

00	Address	1 Byte	1-247
01	Function code	1 Byte	0x82
02	Exception code	1 Byte	Refer to the Modbus standard for more
			details.

03(0x03) Read Digital Input Count Value

Request

00	Address	1 Byte	1-247	
01	Function code	1 Byte	0x03	
02~03	Starting channel	2 Bytes	0x0000~0x000D	
04~05	Input channel	2 Bytes	0x0001~0x000E	
	numbers			

Response

00	Address	1 Byte	1-247
01	Function code	1 Byte	0x03
02	Byte count	1 Byte	N * x 2
03~	Input channel	N* x 2	Each channel can record a maximum
	count value	Byte	count value up to 65535(0xFFFF).

N*=Number of input channels

00	Address	1 Byte	1-247
01	Function code	1 Byte	0x83
02	Exception code	1 Byte	Refer to the Modbus standard for more
			details.

04(0x04) Read Digital Input Count Value

Request

00	Address	1 Byte	1-247
01	Function code	1 Byte	0x04
02~03	Starting channel	2 Bytes	0x0000~0x000D
04~05	Input channel	2 Bytes	0x0001~0x000E
	numbers		

Response

00	Address	1 Byte	1-247
01	Function code	1 Byte	0x04
02	Byte count	1 Byte	N* x 2
03~	Input channel	N* x 2	Each channel can record a maximum
	count value	Byte	count value up to 65535(0xFFFF).

N*=Number of input channels

00	Address	1 Byte	1-247
01	Function code	1 Byte	0x84
02	Exception code	1 Byte	Refer to the Modbus standard for more
			details.

05(0x05) Clear DI count Value (Single channel)

Request

00	Address	1 Byte	1-247	
01	Function code	1 Byte	0x05	
02~03	channel number	•	0×0107 to clear the latch value	
			0x0200~0x020D to clear the DI counter value	
			value	
04~05	Clear DI count	2 Bytes	0xFF00	

Response

00	Address	1 Byte	1-247
01	Function code	1 Byte	0x05
02~03	Output channel	2 Bytes	The value is the same as byte 02 and
	numbers		03 of the Request
04~05	Output value	2 Bytes	The value is the same as byte 04 and
			05 of the Request

00	Address	1 Byte	1-247
01	Function code	1 Byte	0x85
02	Exception code	1 Byte	Refer to the Modbus standard for more
			details.

15(0x0F) Clear DI count Value (Multi channel)

Request

Negu	001		
00	Address	1 Byte	1-247
01	Function code	1 Byte	0x0F
02~03	Starting channel	2 Bytes	0x0200~0x020D to clear the DI counter
			value
04~05	channel numbers	2 Bytes	0x0001~0x000E
06	Byte count	1 Byte	2
07	Clear DI count	1 Byte	0x0000~0x3FFF
			A bit corresponds to a channel. When the
			bit is 1, it denotes that the value of the
			channel that was set is ON. if the bit is 0 it
			denotes that the value of the channel that
			was set is OFF.

Response

00	Address	1 Byte	1-247		
01	Function code	1 Byte	0x0F		
02~03	Starting channel	2 Bytes	The value is the same as byte 02 and		
			03 of the Request		
04~05	Output channel	2 Bytes	The value is the same as byte 04 and		
	numbers		05 of the Request		

00	Address	1 Byte	1-247
01	Function code	1 Byte	0x8F
02	Exception code	1 Byte	Refer to the Modbus standard for more
			details.

01(0x01) Read WDT timeout status

Request

00	Address	1 Byte	1-247
01	Function code	1 Byte	0x01
02~03	Starting channel	2 Bytes	0x010D
04~05	Read WDT timeout	2 Bytes	0x0001
	status		

Response

00	Address	1 Byte	1-247
01	Function code	1 Byte	0x01
02	Byte count	1 Byte	1
03	Read WDT timeout	1 Byte	0x00 The WDT timeout status is clear
	status		0x01 The WDT timeout status is enable

00	Address	1 Byte	1-247
01	Function code	1 Byte	0x81
02	Exception code	1 Byte	Refer to the Modbus standard for more details.

03(0x03) Read WDT timeout Value

Request

00	Address	1 Byte	1-247
01	Function code	1 Byte	0x03
02~03	Starting channel	2 Bytes	0x01E8
04~05	Read WDT timeout	2 Bytes	0x0001
	value		

Response

00	Address	1 Byte	1-247
01	Function code	1 Byte	0x03
02	Byte count	1 Byte	2
03~	Read WDT timeout	1 Byte	0x0000~0x00FF WDT timeout
	value		value, 0~255, in 0.1 second

00	Address	1 Byte	1-247
01	Function code	1 Byte	0x83
02	Exception code	1 Byte	Refer to the Modbus standard for
			more details.

03(0x03) Send Host OK

Request

00	Address	1 Byte	1-247
01	Function code	1 Byte	0x03
02~03	Starting channel	2 Bytes	0x3038
04~05	Send Host OK	2 Bytes	0x0000

No Response

04(0x04) Send Host OK

Request

00	Address	1 Byte	1-247
01	Function code	1 Byte	0x04
02~03	Starting channel	2 Bytes	0x3038
04~05	Send Host OK	2 Bytes	0x0000

No Response

05(0x05) Set WDT timeout /Clear WDT timeout status

Request

Negu			
00	Address	1 Byte	1-247
01	Function code	1 Byte	0x05
02~03	WDT timeout	2 Bytes	0x0104 Set WDT timeout
			enable/disable
			0x010D Clear WDT timeout status
04~05	WDT timeout	2 Bytes	0xFF00 for WDT timeout enable
			0x0000 for WDT timeout disable
			0xFF00 for Clear WDT timeout
			status

Response

00	Address	1 Byte	1-247	
01	Function code	1 Byte	0x05	
02~03	WDT timeout	2 Bytes	The value is the same as byte 02 and	
		-	03 of the Request	
04~05	WDT timeout	2 Bytes	The value is the same as byte 04 and	
		_	05 of the Request	

00	Address	1 Byte	1-247
01	Function code	1 Byte	0x85
02	Exception code	1 Byte	Refer to the Modbus standard for more details.

06(0x06) Set WDT timeout Value

Request

	quoor		
00	Address	1 Byte	1-247
01	Function code	1 Byte	0x06
02~03	Starting channel	2 Bytes	0x01E8
04~05	WDT timeout value	2 Bytes	0x0000~0x00FF WDT timeout
			value, 0~255, in 0.1 second

Response

00	Address	1 Byte	1-247
01	Function code	1 Byte	0x06
02~03	WDT timeout value	2 Bytes	The value is the same as byte 02 and
			03 of the Request
04~05	WDT timeout value	2 Bytes	The value is the same as byte 04 and
		-	05 of the Request

00	Address	1 Byte	1-247
01	Function code	1 Byte	0x86
02	Exception code	1 Byte	Refer to the Modbus standard for
			more details.

Modbus Mapping Table:

EX9041M (DI*14)

ADDR	Item	Attribute
00033~00046	Digital Input channel for DI0~13	R
00065~00078	DI Latch high value for DI0~13	R
00097~00110	DI Latch low value for DI0~13	R
00264	Clear the Latch value	W
30001~30014	Digital input counter for DI0~13	R
00513~00526	Clear the DI counter value for DI0~13	W